Group action

\n6. 9p. X set. An action of G on X is a map

\n
$$
G \times X \rightarrow X, (9.x11 \rightarrow 9x
$$
\n5.6 ${}^{41}1 \times = x$ $Y \times 6 \times$

\n(2) $(3,3) \times = 3, (3, x)$ $Y \times 6 \times$ and $3, 3, 6, 6$.

\nWe may informally denote it by $G \cap X$

\nProp. An action of G on X is equivalent to a 3p her

\n
$$
P: G \rightarrow S_X, where S_X is the 3p of permutation on X.
$$
\n9.4. Given a 3p action $m: G \times X \rightarrow X$,

\nwe define $P(9): X \rightarrow X$ by $x \mapsto 3 \times$

\ncheck $P(9)$ is b,-yective (use the fact that 3 hag, diverge)

\nThen $P(0) \in S_X$

\nNow by (2) of det of G-ation,

\n
$$
P(9,9,1) \times 1 = P(9,1) (P(9,1) \times 1)
$$
\n
$$
Y \times 6 \times
$$
\nSo $P(3, 3) = P(9) \cdot P(3 \cdot)$. Thus, P is a 3p horu.

\nOn the other hand, given $P: G \rightarrow S_X$, define

\n
$$
m: G \times X \rightarrow X
$$
\nby (9,9,1) \rightarrow P(9) $6 \times$

\nTheu⁽¹⁾ $1 \times = \rho(4) \cdot x = \frac{\partial f}{\partial X} \cdot \frac{\partial f}{\partial X} = \frac{\partial f}{\partial X} \cdot \frac{\partial f}{\partial X}$

\nTheu⁽¹⁾ $1 \times = \rho(4) \cdot x = \frac{\partial f}{\partial X} \cdot \frac{\partial f}{\partial X} = \frac{\partial f}{\partial X} \cdot \frac{\partial f}{\partial X}$

\nTheu⁽¹⁾ $1 \times = \rho(4) \cdot x = \frac{\partial f}{\partial X} \cdot \frac{\partial f}{\partial X} = \frac{\partial f}{\partial X} \cdot \frac{\partial f}{\partial X}$

Def. $G \times = \{ g \times [g \in G] \subseteq X \text{ is the white of } x$ Ruk. Gats on X transitively aff # orbits = 1.

 $\lvert \ln p. \rvert = \lvert G \cdot x \rvert = \lvert G \cdot G_x \rvert$ P_7 . Define a map f : $G/G_x \longrightarrow G \times$ $9G_{\times} \leftarrow 99. \times$ Check - well-defined ' Suj \cdot inj \Box

are all the distinct Cor. If $|x|$ is finite and $G(x_1, y_1)$ G. x_n orbits in \times with $|G \times x| > 1$, then (Class equation) $[\chi] = [\chi \hat{\mathfrak{a}}] + \sum [\mathfrak{a} : \mathfrak{a}_{x} \cdot \mathfrak{a}]$

Conjugation action: $GxG \rightarrow G$, $(g, x) \mapsto gxg^{-1}$, $\vec{c}: G \rightarrow Aut(G)$. The ribit of $x \in G$ is called a conjugacy clum of x · The stabilizer of x is called the cartralizer of x. · Each ig) is called an inner automorphism of G. $I_{n}(\omega) = I_{nn}(\zeta)$ · $Inn(G)$ \triangleleft Ant (G) · Out (G): = Ant (G) (Inn (G) outer automorphism gp of G

As an application of the class equation, we have
for. Let G be a finite
$$
gp
$$
. Then
 $|G| = |Z(G)| + \sum C_G: Z_G(x_i)$

Prop. Let G be a finite p-sp (i.e. the order of G is a power of p), then
$$
Z(G)
$$
 is nontrivial.

\nPf. $[G] = [Z(G)] + \Sigma[G:Z_G(x_i)]$

\nSuppose that $[G] = p^r$. Then $Z_G(x_i)$ are proper subgp of G.

\nhence $[Z_G(x_i)] = p^{r_i}$ with $Y_i \leq Y$.

\nIn particular, p | $[G:Z_G(x_i)]$ if c.

\nThus $|Z(G)| = |G| - \Sigma[G:Z_G(x_i)]$ is divisible by p.

\n
$$
\leq Z(G)
$$
 is nontrivial

Cor. Tf $|G|=p^2$, then G is abelian P f. Since $Z(G)$ is montrivial, $Z(G) = P$ or P^2 . If $Z(G)$ = γ , then $G/Z(G) \cong Z_p$ is cyclic. Then contradiction by Ex 15, Q 37. ∇ Cor. $Tf |G| = \beta^3$, then G is abelian or G is nonabelian with $Z(G) = Z_p$, $6/2G_1$ $E_{\rho} \times Z_p$ PF . D $|ZG\nu| = p^3$ then G is abelian $260 = p^2$, then ^G is cyclic , and ^G is abelian (contradicting β $[260]$ =p, the $|G/Z(G)| = p^2$. So $G/Z(G)$ is abelian $tris 6/2(6)$ cyclic, then by $E\times 15$, Q37, G abelian $\frac{1}{2}$ GIC I=1, the 1G/21GII-1, so GI21G) is abelian
City G/Z(G) cyclic, then by Ex15, Q37, G abelian (ii) G/266) = Zpx Zp
Rmk. Nonabelian gps of order 8 are iso to Dx or the quaternion op {£1, Ii, Ij, Ik} Def. A p-gp is a finite gp of order pⁿ for somen Prop. Let G be a p-gp and X be a finite G-set. Then $\lceil x \rceil = \lceil x^{G_1} \rceil$ mod p $\lceil x \rceil$ $\lceil x^{\frac{G}{n}} \rceil$ $\lceil x^{\frac{G}{n}} \rceil$ and ρ
 $\lceil x \rceil$. By class equation, $\lceil x \rceil = \lceil x^{\frac{G}{n}} \rceil + \sum C_i \cdot G_i \cdot J$, where G_i are

$$
pwp \text{ or } s_n s_{p0} \text{ of } G. \quad S_0 \subset G: G_0: J \equiv D \mod p.
$$
\n
$$
The \text{ or } |x| \equiv |x^6| \mod p
$$

Def. Let
$$
H < G
$$
. Set $N_G(H) = \int 8 \cdot 6G \mid 8H8^{-1} = H \}$ nowmality of H .
Rmk. · N_G(H) = G if $H \triangle G$.
• N_G(H) is the largest subgp of G in which H is normal.

Lem. If His a p-shlyp of a finite pp G. Then
\n
$$
[N_G(H):H] \equiv C G: H] \mod P
$$
\n
$$
P_{T}^{E} \cdot Let X = G/H \text{ and } H \text{ acts on } X \text{ on the left.}
$$
\n
$$
P_{T}^{E} \cdot Let X = G/H \text{ and } H \text{ acts on } X \text{ on the left.}
$$
\n
$$
Cov. If H is a p-shayp of a finite pp G. and p I C G: H]
$$
\n
$$
Cov. If H is a p-shayp of a finite pp G. and p I C G: H]
$$
\n
$$
= \int F.
$$
\n
$$
[N_G(H):H] \equiv C G:H] = Cov(P^{n} \mod P I C G: H)
$$
\n
$$
= \int_{0}^{t} \int_{0}^{t}
$$

Cor. Any ^p - gp is solvable Pf. By 1st Sylow Th, we have a subnormal series with gostient gps Iso to Zep. So G is solvable

Def. Let G be a finite g_{ρ} of order ρ^{\wedge} m with $\varsigma \rho$, m)=1. A subgp of G is called a Sylow p-subgp if it is of order pⁿ

 1^{st} Sylow Th \Rightarrow Sylow p-subgp always exists 2^{nd} Sylow Th. If H is a p-subgy of G, and P is a Sylow p-subgp. $The 1966$ st. H< $919¹$ In particular, any two Sylow p-subgo of G are conjugate P f. Let $X = G/\rho$ and H acts on X on the left. Then $|X^H| = |X| = [G: P] \neq 0$ mod p. So $X^H \neq \emptyset$ Note that $a \rho \in G/\rho$ is fixed by H if $H < a \rho a^{-1}$.
So Za $\in G$, st. $H < a \rho a^{-1}$. S $\exists a \in G$, st. $H < a p a^{-1}$. 3rd Sylov Th. Let np be the number of Sylow p-subgp of G Then $np \mid |G|$ and $n_p \equiv 1$ mod p. $PF.$ By 2^{nd} Sylow Th, $np = \text{LG}: N_G(p) \text{ is } n_p \text{ [G]}$ Now let $X = \frac{1}{5}$ Sylov P-subgp of G3 with P acts by conjugation

Then
$$
X^p = \{p\}
$$
, $S_o |x| = |x^p| = 1$ and p 1

Amblication in number theory.

\nWolson's Th . (p-1)
$$
l \equiv -1
$$
 mvolp

\n9.2 Let $G = Sp$. Then the *By* by $p - q$ del n .

\nand hence are *sulap* gen by $p - q$ del n .

\n# $p - q$ del $l^{(p-1)/2} > S$ *subgp* of order p ?

\nas each *subgp* contains $(p-1)$ of p -cycles.

\nSo $np = (p-2)$:

\nBy 3^{rd} *Sylaw* th, $(p-2)!$ \equiv $(p-1) \equiv -1$ mod p .

\nSo $(p-1)!$ \equiv $(p-1) \equiv -1$ mod p .